
John Hughes’s
“Why functional programming matters”

Marc Paterno
Neat Topics for Programmers
25 October 2011

The purpose of this “Neat Things” session

Understand the features of lazy functional languages that
Hughes argues are important.

Discuss the utility of these features for the kinds of problems
on which we work.

See if we can obtain the same or similar advantages in C++,
especially C++ 2011.

2 / 30

Not a negative

Features of functional languages . . .

no assignment statements

no side-effects in functions

order of execution is irrelevant

. . . yielding referential transparency (can replace a function
call by its value)

“It is a logical impossibility to make a language more powerful by
omitting features, no matter how bad they may be.”

3 / 30

Structured programming (and more)

Structured programs are designed in a modular fashion.

Break a large problem into smaller sub-problems

Solve the sub-problems

Combine the results to solve the original problem

Modules can be written and tested independently

The ways in which the original problem can be sub-divided
depend on the ways in which one can “glue” solutions
together

Object-oriented programming introduced some new “glue”
(dynamic polymorphism using classes, virtual functions)

Generic programming introduced some new “glue”
(parametric polymorphism using class and function templates)

4 / 30

New glue in functional languages

In lazy functional languages, Hughes identifies two important types
of glue

1 Higher-order functions. Examples in the paper include:

foldr
map
foldtree

2 Lazy evaluation. Examples in the paper include:

next, in the Newton-Raphson square root implementation
differentiate, improve in numerical differentiation
itegrate, super in numerical integration

5 / 30

What can we learn from this for our use of C++?

C++ 2011 provides anonymous functions (lambdas) and
easier access to the results of type deduction (auto).

We can write higher-order functions as template functions,
which accept a one or more functions as function parameters.

What is the equivalent of lazy evaluation for glueing functions
in C++?. Can we achieve the result we want using iterators?

6 / 30

Hughes on lazy evaluation in imperative languages

“Adding lazy evaluation to an imperative notation is not
actually impossible, but the combination would make the
programmers life harder, rather than easier. Because lazy
evaluations power depends on the programmer giving up
any direct control over the order in which the parts of a
program are executed, it would make programming with
side effects rather difficult, because predicting in what
order—or even whether—they might take place would
require knowing a lot about the context in which they are
embedded. Such global interdependence would defeat the
very modularity that—in functional languages—lazy
evaluation is designed to enhance.”

This was first written in 1984 (published in 1989). With C++
2011 in mind as the imperative languge, is this analysis correct?

7 / 30

The remainder of these slides are examples from the paper,
translated to Haskell, that we can use as necessary to help us
understand Hughes’s points.

8 / 30

Page 4

sum :: [Integer]→ Integer -- function type
sum [] = 0 -- equation (1)
sum (x : xs) = x + Main.sum xs -- equation (2)

We can extract the computation pattern as comp:

comp :: (a→ b → b)→ b → [a]→ b
comp f init [] = init
comp f init (x : xs) = f x (comp f init xs)

This function appears in the Haskell Prelude, under the name foldr .

9 / 30

Page 4 (cont’d)

We could have defined sum using the Prelude function foldr :

sum2 :: [Integer]→ Integer
sum2 = foldr (+) 0

Then we get sum2 [1, 2, 3, 4] = 10

10 / 30

Page 5

Using foldr we can define other functions:

myproduct = foldr (∗) 1
anytrue = foldr (∨) False
alltrue = foldr (∧) True

The function myproduct is of type
myproduct :: [Integer]→ Integer ; this was automatically
determined by Haskell as the most general type consistent with the
definition. myproduct [1, 2, 3, 4] evaluates to 24.

11 / 30

Pages 5-6

Although Haskell can almost always deduce a function type from
its definition, I like to provide them explicitly.

It is useful documentation.

It helps make sure the function type is what I expect it to be.

append :: [a]→ [a]→ [a]
append a b = foldr (:) b a

(:) is the function form of the colon operator; its type is
(:) :: a→ [a]→ [a]. The name length is already used in the
Haskell Prelude, so we use mylength:

mylength = foldr count 0
count :: a→ Integer → Integer
count a n = n + 1

12 / 30

Page 6

Haskell allows defining “local” names with a where clause:

doubleall = foldr doubleandcons []
where doubleandcons n lst = (2 ∗ n) : lst

doubleandcons = fandcons double
where double n = 2 ∗ n

fandcons f elem lst = (f elem) : lst

fandcons f = (:) ◦ f

Haskell deduces the type: fandcons :: (a→ b)→ a→ [b]→ [b].

13 / 30

Page 6 (cont’d)

doubleall2 = foldr ((:) ◦ double) []
where double x = 2 ∗ x

or, using Haskell’s lambda function notation,

doubleall3 = foldr ((:) ◦ λx → 2 ∗ x) []

Without LATEX’s fancy formatting, that looks like:

doubleall3 = foldr ((:) . \x -> 2*x) []

The simplest definition for doubleall would be:

doubleall4 = map (2∗)

14 / 30

Page 6 (cont’d again)

map is from the Haskell Prelude, but we could have written it
ourselves:

map2 f = foldr ((:) ◦ f) []

Haskell tells us the type of this is: map2 :: (a→ b)→ [a]→ [b].

15 / 30

Page 7

Tree1 is a parameterized type. We could use the Standard Library
Data.Tree, which is slightly more general, because it can be empty,
but let’s define it ourselves:

data Tree a = Tree a [Tree a] deriving (Eq, Show ,Read)

The deriving (Eq,Show ,Read) makes the compiler generate some
useful code for us. We can create the tree in the diagram on
page 7:

four = Tree 4 []
two = Tree 2 []
three = Tree 3 [four]
z = Tree 1 [two, three]

The value of z is Tree 1 [Tree 2 [],Tree 3 [Tree 4 []]].

1This type is sometimes called a Rose tree.
16 / 30

Page 7 (cont’d)

N.B.: Hughes’s paper went through several revisions and changes
in notation; the one we have has an error! Here’s the corrected
version, also translated into Haskell.

-- f is applied to Nodes, g is applied to sub-Trees
foldt f g acc (Tree lbl ts) = f lbl (foldt ′ f g acc ts)
foldt ′ f g acc (t : ts) = g (foldt f g acc t) (foldt ′ f g acc ts)
foldt ′ f g acc [] = acc

This gives us types:
foldt :: (t → t2 → t1)→ (t1 → t2 → t2)→ t2 → Tree t → t1
foldt ′ :: (t → t2 → t1)→ (t1 → t2 → t2)→ t2 → [Tree t]→ t2 .
We can use this:

sumtree = foldt (+) (+) 0

which then gives sumtree z equals 10.

17 / 30

Page 7 (cont’d again)

We can extract all the labels

labels = foldt (:) append []

Then labels :: Tree t → [t] and labels z = [1, 2, 3, 4]. And we can
define the equivalent of map for Tree:

maptree f = foldt (Tree ◦ f) (:) []

so that maptree (∗10) z yields
Tree 10 [Tree 20 [],Tree 30 [Tree 40 []]].

18 / 30

Infinite sequences

Hughes’s function repeat is known in the Haskell Prelude as
iterate:

-- iterate f a = a : iterate f (f a)
henon map (x , y) = (y + 1− 1.4 ∗ x ∗ x , 0.3 ∗ x)
infinite list = iterate henon map (0, 0)

Note that we have defined an infinite list, but we have not
calculated any elements of it. Calculation doesn’t happen until we
write code that actually evaluates an entry, such as
take 3 infinite list which evaluates to
[(0.0, 0.0), (1.0, 0.0), (−0.3999999999999999, 0.3)], or
infinite list !! 20 which is
(0.34951464064152427, 0.19730159602884131) or
infinite list !! 1000 which is
(−0.6277258392467069, 0.3097851907270172)

19 / 30

Newton-Raphson

next n x = (x + n / x) / 2.0
within eps (a : b : rest) = if abs (a− b) 6 eps

then b
else within eps (b : rest)

-- a0 is our initial guess
-- eps is the absolute tolerance to within which
-- we want the answer

absqrt ′ a0 eps n = within eps (iterate (next n) a0)
absqrt = absqrt ′ (1.0) (1.0e− 6)

Then absqrt 4 yields 2.000000000000002, which is off by
2.220446049250313e− 15 (absolute error), which is less than
1.0e− 6.

20 / 30

NR with relative error bound

relative eps (a : b : rest) = if abs (a / b − 1) 6 eps
then b
else relative eps (b : rest)

relsqrt ′ a0 eps n = relative eps (iterate (next n) a0)
relsqrt = relsqrt ′ (1.0) (1.0e− 6)

Then relsqrt 4 yields 2.000000000000002, which is off by
1.1102230246251565e− 15 (relative error), which is less than
1.0e− 6.
Note that we didn’t have to rewrite the part of the code that
generates the sequence of approximations.

21 / 30

A step that Hughes did not do

We can factor out more commonality:

finder f eps (a : b : rest) = if (f a b) 6 eps
then b
else finder f eps (b : rest)

within′′ = finder (λa b → abs (a− b))
relative ′′ = finder (λa b → abs (a / b − 1))
gensqrt errfunc a0 eps n = errfunc eps (iterate (next n) a0)
absqrt ′′ = gensqrt within′′

relsqrt ′′ = gensqrt relative ′′

22 / 30

Even more refactoring
With finder defined as above, we could write

gensqrt ′ f a0 eps n = finder f eps (iterate (next n) a0)
absqrt ′′′ = gensqrt ′ (λa b → abs (a− b)) (1.0) (1.0e− 6)
relsqrt ′′′ = gensqrt ′ (λa b → abs (a / b − 1)) (1.0) (1.0e− 6)

Then relsqrt ′′′ 4 yields 2.000000000000002, which is off by
1.1102230246251565e− 15 (relative error), which is less than
1.0e− 6. Generalize one more step:

generate fcn nxt f a0 eps n = finder f eps (iterate (nxt n) a0)
gensqrt ′′ = generate fcn (λn x → (x + n / x) / 2.0)
gencbrt ′′ = generate fcn (λn x → (2 ∗ x + n / (x ∗ x)) / 3.0)
relsqrt ′′′′ = gensqrt ′′ (λa b → abs (a / b − 1)) (1.0) (1.0e− 6)
abcbrt ′′′′ = gencbrt ′′ (λa b → abs (a− b)) (1.0) (1.0e− 6)

And abcbrt ′′′′ 27.0 is 3.0000000000000977, with (absolute) error:
9.769962616701378e− 14.

23 / 30

What have we achieved?

We have produced a function generate fcn, that takes
1 a function nxt that generates approximation n + 1 from

approximation n,
2 a function f that computes the measure of disagreement

between its arguments (we have used absolute and relative
errors)

3 an initial estimate a0
4 the maximum permissible value eps of the measure of

disagreement
5 the point n at which the function we’re approximating is to be

evaluated.

This function can be used to create other functions, given
that we have a way to (e.g. Newton’s method) of getting
from one step in the iterative approximation to the next.

24 / 30

Pages 12-13

easydiff f x h = (f (x + h)− f x) / h

where easydiff :: Fractional a⇒ (a→ a)→ a→ a→ a

differentiate h0 f x = map (easydiff f x) (iterate halve h0)
halve x = x / 2

The derivative of the function f at point x can be computed by
within eps (differentiate h0 f x). We can accelerate the
convergence of the sequence, introducing

elimerror n (a : b : rest) =
(b ∗ (2 ↑ n)− a) / (2 ↑ n − 1) : (elimerror n (b : rest))

where elimerror :: (Integral b,Fractional a)⇒ b → [a]→ [a]

25 / 30

Page 13

order (a : b : c : rest) = round (log2 ((a− c) / (b − c)− 1))
log2 x = logBase 2 x
improve s = elimerror (order s) s

where improve :: (RealFrac a,Floating a)⇒ [a]→ [a]
Note that most Haskell experts would write

log2 ′ = logBase 2

rather than what we have above.

26 / 30

Page 13, cont’d

super s = map second (iterate improve s)
second = head ◦ tail
deriv eps h0 f x = within eps (super (differentiate h0 f x))

where
deriv :: (RealFrac a,Floating a)⇒ a→ a→ (a→ a)→ a→ a

27 / 30

Page 14

Note that Hughes forgets to define addpair

addpair (x , y) = x + y
easyintegrate f a b = (f a + f b) ∗ (b − a) / 2
integrate f a b = (ei f a b) :

(map addpair (zip (integrate f a mid)
(integrate f mid b)))

where mid = (a + b) / 2
ei = easyintegrate

Then easyintegrate sin 0 1 yields 0.42073549240394825 (the
correct result is 0.45969769413186028.

28 / 30

Page 15

integrate2 f a b = integ f a b (f a) (f b)

integ f a b fa fb = ((fa + fb) ∗ (b − a) / 2) :
map addpair (zip (integ f a m fa fm)

(integ f m b fm fb))
where m = (a + b) / 2

fm = f m

where integrate2 :: Fractional a⇒ (a→ a)→ a→ a→ [a]
take 3 (integrate2 sin 0 1) yields
[0.42073549240394825, 0.45008051550407563, 0.4573009375715021]
within 1.0e− 6 (integrate2 sin 0 1) yields 0.4596975479978896

29 / 30

Performance of super with integrate2

*Main> let ans = 1.0 - cos(1.0)

*Main> :set +s

*Main> ans - within 1.0e-6 (integrate2 sin 0 1)

1.4613397064655587e-7

it :: Double

(0.01 secs, 3697892 bytes)

*Main> ans - within 1.0e-6 (super (integrate2 sin 0 1))

-3.6559644200906405e-13

it :: Double

(0.01 secs, 3194080 bytes)

*Main> ans - within 1.0e-12 (integrate2 sin 0 1)

1.3933298959045715e-13

it :: Double

(5.56 secs, 710636016 bytes)

*Main> ans - within 1.0e-12 (super (integrate2 sin 0 1))

-1.1102230246251565e-16

it :: Double

(0.01 secs, 3200928 bytes)

30 / 30

